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Traffic offloading is crucial for reducing computing latency in distributed edge systems such as vehicle-to

everything (V2X) networks, which use roadside units (RSUs) and access network mobile edge computing (AN

MEC) with ML agents. Traffic offloading is part of the control plane problem, which requires fast decision-making 
in complex V2X systems. This study presents a novel ratio-based offloading strategy using the twin delayed 
deep deterministic policy gradient (TD3) algorithm to optimize offloading ratios in a two-tier V2X system, 
enabling computation at both RSUs and the edge. The offloading optimization covers both vertical and horizontal 
offloading, introducing a continuous search space that needs fast decision-making to accommodate fluctuating 
traffic in complex V2X systems. We developed a V2X environment to evaluate the performance of the offloading 
agent, incorporating latency models, state and action definitions, and reward structures. A comparative analysis 
with metaheuristic simulated annealing (SA) is conducted, and the impact of single versus multiple offloading 
agents with deployment options at a centralized central office (CO) is examined. Evaluation results indicate that 
TD3’s decision time is five orders of magnitude faster than SA. For 10 and 50 sites, SA takes 602 and 20,421 
seconds, respectively, while single-agent TD3 requires 4 to 24 milliseconds and multi-agent TD3 takes 1 to 3 
milliseconds. The average latency for SA ranges from 0.18 to 0.32 milliseconds, single-agent TD3 from 0.26 to 
0.5 milliseconds, and multi-agent TD3 from 0.22 to 0.45 milliseconds, demonstrating that TD3 approximates SA 
performance with initial training.

1. Introduction

Fifth generation (5G) networks facilitate the growth of intelligent 
transportation systems (ITS) with high capacity and low latency commu

nication, enhancing transportation efficiency, safety, and comfort [1]. 
Vehicles, equipped with computing devices, communication tools, and 
embedded sensors, collect data for artficial intelligence (AI) agents 
with machine learning (ML) algorithms to perform ITS services. In 
services such as AI-assisted driving, collision detection, and vehicle 
platooning, vehicles interact with environmental entities, referred to 
as vehicle-to-everything (V2X), including scenarios such as vehicle

to-vehicle (V2V), vehicle-to-pedestrian (V2P), vehicle-to-roadside unit 
(V2R), and vehicle-to-infrastructure (V2I) [2]. 3GPP Rel. 16 dfines the 
first standard for V2X based on a 5G new radio (NR) air interface [3].

Vehicles have limited computing and energy resources but need to 
process enormous amounts of data for advanced driving and automa
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tion. Offloading computationally intensive tasks to a cloud system can 
result in excessive propagation delays if vehicles are far from the central

ized cloud. Network function virtualization (NFV) supports the flexible 
deployment of network and computing services closer to vehicles at lo

cations such as roadside units (RSUs) and access network mobile edge 
computing (AN-MEC), which are ideal for latency-sensitive service pro

cessing [4]. NFV is instrumental in managing both the control and data 
planes of the network: the control plane functions as the network’s brain, 
gathering information, abstracting network functionalities, and mak

ing critical decisions, such as offloading; the data plane then executes 
these decisions by forwarding packets from input interfaces to desig

nated outgoing interfaces, effectively managing the dynamic conditions 
of modern networked systems [5].

In this paper, we examine a two-tier architecture comprising RSU 
and AN-MEC. In congested road intersections, often hotspots of traffic, 
vehicles frequently offload tasks to nearby RSUs to efficiently manage 
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network load. To minimize computing latency, an overloaded RSU may 
offload tasks either horizontally to neighboring RSUs or vertically to AN

MEC. Rapid offloading decisions are critical in these hotspot traffic areas 
and are managed by the RSU’s control plane, which determines both the 
offloading destination and volume, represented by the offloading ratio 
within a continuous action search space.

The ratio-based offloading within a continuous action search space 
highlights the limitations of traditional optimization methods, which 
involve extensive searches and often respond too slowly to dynamic 
traffic conditions, leading to outdated decisions. This is particularly 
problematic since the control plane’s latency requirements are usually 
less stringent, typically in the range of milliseconds [6]. ML methods, 
particularly reinforcement learning (RL), provide a more effective so

lution by enabling suboptimal decisions in real time without the need 
for a fully optimal solution. RL is particularly advantageous in dynamic 
V2X environments where supervised learning is impractical due to the 
extensive and challenging data labeling required [7]. By learning di

rectly from the environment, RL facilitates optimal offloading in V2X 
systems. It employs online learning and a trial-and-error phase, enabling 
the agent to quickly make initial decisions. These decisions are rfined 
over time through continuous interaction with the environment, gradu

ally approximating the optimal solution [8].

This study proposes an offloading strategy for a two-tier V2X sys

tem, allowing computing at both the RSU and the edge through verti

cal (RSU-to-AN-MEC) and horizontal (RSU-to-RSU and AN-MEC-to-AN

MEC) offloading. Offloading decisions, which consider vehicle resource 
availability and energy, typically occur at the application level. How

ever, this study treats offloading as a control plane issue that requires 
rapid decision-making in response to fluctuating traffic, such as hotspot 
traffic. We employ the twin delayed deep deterministic policy gradient 
(TD3) algorithm, which addresses continuous action space challenges 
and demonstrates superior performance compared to the deep determin

istic policy gradient (DDPG), trust region policy optimization (TRPO) 
and soft actor-critic (SAC) algorithms [9]. TD3 is used to perform ratio

based offloading, where the ratio determines both the destination and 
extent of offloading required. The main contributions and distinct fea

tures of this paper are summarized as follows:

• Introduction of a novel RL-based, ratio-based offloading optimiza

tion in a V2X system that efficiently manages both vertical and 
horizontal offloading. This optimization utilizes the TD3 algorithm 
within the network control plane, supported by a newly developed 
V2X testing environment that includes detailed latency models, 
state and action definitions, and a reward structure to assess of

floading agent performance.

• Comprehensive comparative analysis of the TD3 with traditional 
optimization methods like simulated annealing (SA), focusing on 
key performance metrics such as decision and convergence times, 
decision quality, and the impacts of deploying single versus mul

tiple offloading agents. This includes potential centralized deploy

ment strategies to enhance coverage and operational efficiency.

The remainder of this paper is organized as follows. Section 2

presents the previous work on optimal ML-based offloading. Section 3
describes the V2X system, problem formulation, and latency models. 
Section 4 presents the solution algorithms, TD3 and SA, for ratio-based 
offloading. Section 5 describes the simulation environment and presents 
the numerical results. Section 6 concludes the paper.

2. Related work

This section reviews key approaches to offloading optimization in 
V2X systems, categorized into supervised learning, reinforcement learn

ing, multi-agent reinforcement learning, advanced deep learning, and 
distributed optimization. We highlight the contributions, limitations, 
and differences from our work, see Table 1.

2.1. Supervised learning-based approaches

Supervised learning techniques have been employed for offload

ing optimization in V2X systems, where labeled data are used to train 
models. Sonmez et al. [10] introduced a two-stage supervised learning 
approach. In the first stage, they used a supervised machine learning 
algorithm to classify which destination can handle incoming tasks with 
either success or failure. The second stage applied regression to estimate 
the processing time required. Bo Fan et al. [19] optimized traffic offload

ing in vehicular networks with access points. Their goal was to maximize 
network throughput by adjusting offloading decisions. However, both 
approaches require substantial amounts of labeled data, which is ex

pensive to collect in dynamic environments like V2X.

The dependency on labeled data in dynamic environments increases 
the cost and complexity of data collection, making it challenging for 
real-time and large-scale V2X systems.

2.2. Reinforcement learning (RL) approaches in V2X offloading

Reinforcement learning (RL) has emerged as a more flexible alter

native to supervised learning in V2X systems, as it can learn the opti

mal offloading strategies by directly interacting with the environment. 
Zhou et al. [11] proposed a vehicular fog network (VFN) with three 
offloading modes: V2V, Vehicle-RSU-Vehicle (V2R2V), and Pedestrian

RSU-Vehicle (P2R2V). They utilized a multi-armed bandit (MAB)-based 
offloading approach, supported by supervised learning to predict vehi

cle mobility. They also incorporated coded computing to divide tasks 
into multiple subtasks, leveraging fog resources.

Ke et al. [12] optimized the binary offloading decision for subtasks 
by balancing the trade-offs between energy consumption and latency. 
They developed an adaptive offloading algorithm using the deep deter

ministic policy gradient (DDPG) method with Ornstein-Uhlenbeck noise, 
enhancing the exploration of action space. Shi et al. [13] addressed of

floading and resource allocation in VFN, where vehicles could either 
process their tasks locally or offload them to nearby service vehicles. 
Their approach employed the soft actor-critic (SAC) algorithm to op

timize resource utilization, making offloading decisions based on the 
available resources at the base station. Yang et al. [14] extended the of

floading optimization to multi-hop vehicular networks, using DDPG to 
maximize computational throughput by gathering resources from mul

tiple vehicles.

Khayyat et al. [17] applied deep Q-learning (DQN), using multiple 
deep neural networks (DNNs) to parallelize the offloading decision

making process. Zhang et al. [18] combined the analytic hierarchical 
process (AHP) with Q-learning to optimize both offloading and re

source allocation while minimizing system costs. Li et al. [39] proposed 
a location-aware offloading mechanism using DDPG, further integrat

ing task partitioning and scheduling strategies to reduce computational 
complexity.

These works focus on offloading decisions made by vehicles and user 
equipment (UE), leaving other components of the V2X system, such as 
RSUs, underexplored, particularly in terms of network-level offloading 
and handling hotspot traffic.

2.3. Multi-agent reinforcement learning (MARL) approaches

Multi-agent reinforcement learning (MARL) has been applied to 
more decentralized V2X systems, where multiple agents (vehicles, RSUs) 
cooperate to optimize offloading decisions. Zhu et al. [40] introduced 
an aerial relay station (ARS) for Internet of Vehicles (IoV) networks, 
minimizing system latency by using a multi-agent RL algorithm in a cen

tralized training and distributed execution (CTDE) framework. In their 
binary offloading scenario, each vehicle made offloading decisions in

dependently of other vehicles in the network. However, they did not 
account for queuing latency or realistic vehicular traffic.
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Table 1
ML-based offloading optimization in V2X.

Paper

Agent Model Network Model 
Comparison with 
conventional optimization Problem Ratio-

based 
Online 
learning Approach Agent Objective Network target Constraint

Unknown 
parameter 

Performance Response 
time 

Control 
plane 

Mgmt. 
plane 

[10] 

X

X

UE

X

X

O

ML supervised 1 Minimize latency 𝑉 ↑ 𝐸, 𝑉 ↑ 𝐶 Resources User mobility 
[11] MAB-based 1 Minimize latency 𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅 ↓ 𝑉 ,

𝐷 ↑ 𝑅 ↓ 𝑉

Resources User mobility 

[12] DDPG-based 1 Minimize cost 𝑉 ↑ 𝐸 Resources Available resources 
[13] SAC 1 Maximize utility 𝑉 ↔ 𝑉 Resources Available resources 
[14] DDPG 1 Maximize 

throughput

𝑉 ↔ 𝑉 Resources Available resources 

[15] CDRO DRL-based 1 Minimize 
computation 
completion time

𝑈𝐸 ↑ 𝐸 Resources Available resources 

[16] DQN-based 1 Minimize latency 
and detection loss

𝑉 ↑ 𝐸, 𝐸 ↓ 𝑉 Resources Available resources 

[17] 
O

RL 1 Minimize latency 
and energy

𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅, 
𝑉 ↑ 𝐼

Resources Available resources 

[18] 
X

AHP + Q learning 1 Minimize Cost and 
Energy

𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅 Resources Available resources 

[19] 
Network X

DL 1 Maximize 
throughput

𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅 Latency Available resources 

[20] 

O

Quantum DRL-based 1 Minimize latency 𝑉 ↑ 𝑅, 𝑉 ↑ 𝐸 Resources Available resources 
[21] DDPG-based 1 Minimize latency 

and energy

𝑉 ↑ 𝐸, 𝐸 ↑ 𝐶 Latency Available resources 

[22] 
UE

DDPG-based 1 Minimize latency 
and energy

𝑉 ↑ 𝑅, 𝑅 ↑ 𝐸 Latency and 
resources

Available resources 

[23] O MADDPG-based n Minimize latency 𝑉 ↑ 𝑉 , 𝑉 ↑ 𝐼 , 𝑉 ↑ 𝐸 Resources Available resources 
[24] 

Network

DRL PPO n Minimize latency 𝑉 ↑ 𝑅, 𝑉 ↑ 𝐸 Transmis

sion power

Available resources 

[25] 

O

KKT-based 1 Minimize latency 𝑉 ↑ 𝑅 Latency and 
resources

Available resources 

[26] DDPG-based PER 1 Minimize latency 
and energy

𝑉 ↑ 𝐸, 𝑉 ↑ 𝐶 Resources Available resources 

[27] Actor-Critic 1 Minimize latency 
and energy

𝑉 ↑ 𝐸 Latency and 
resources

Available resources 

[28] DDPG-based 1 Minimize latency 𝑉 ↑ 𝐸 Resources Available resources 
[29] MADDPG-based n Minimize latency 

and energy and 
rental price

𝑉 ↑ 𝑅, 𝑉 ↑ 𝐸 Latency Available resources 

[30] 

X

D4PG n Minimize latency 
and energy

𝑉 ↑ 𝑅, 𝑅 ↔ 𝑅 Latency and 
resources

Available resources 

[31] MARL C3O-based n Minimize latency 𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅 Latency Available resources 
[32] TD3-based DRL n Minimize latency 

and energy

𝑉 ↑ 𝑅, 𝑅↔ 𝑅, 
𝑅 ↓ 𝑉

Resources Available resources 

[33] UE X X MARL-based n Minimize latency 𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅, 
𝑅 ↔ 𝑅,

Latency Available resources 

[34] 

O

DQN-based 1 Maximize 
throughput

𝑉 ↑ 𝐸, 𝐸 ↔ 𝐸 Latency Available resources 

[35] MADDPG-based n Minimize latency 
and energy

𝑉 ↔ 𝑉 , 𝑉 ↑ 𝐸 Resources Available resources 

[36] 
O

DQN-based n Minimize latency 
and energy

𝑉 ↑ 𝐸, 𝐸 ↓ 𝑉 Resources Available resources 

[37] Stackelberg-MADDPG n Minimize latency 
and task costs

𝑉 ↔ 𝑉 , 𝑉 ↑ 𝐼 Resources Available resources 

[38] MAB-based 1 Minimize latency 𝑉 ↔ 𝑉 Latency Available resources 
[39] 

O

O

DDPG 1 Minimize latency 
and latency 
violation

𝑉 ↑ 𝑅, 𝑅 ↔ 𝑅 Resources Available resources 

[40] MADRL n Minimize latency 𝑉 ↑ 𝑅, 𝑅 ↔ 𝑅 Latency Available resources 
[41] MADDPG n Minimize latency 

and maximize 
reliability

𝑉 ↑ 𝑅, 𝑅↔ 𝑅, 
𝑅 ↓ 𝑉

Resources Available resources 

[42] 

X

X MA-GAC n Minimize latency 𝑉 ↔ 𝑉 , 𝑉 ↑ 𝑅 Resources Arrival traffic 
[43] X SMRL-MTO n Minimize latency 𝑉 ↑ 𝐸 Resources Arrival traffic 
[44] 

O

MADRL n Maximize utility 𝑉 ↔ 𝑉 , 𝑉 ↑ 𝐼 Latency Available resources 
[45] 

Network

MAB n Minimize latency 𝑉 ↑ 𝑅, 𝑉 ↑ 𝐸, 
𝑅 ↑ 𝐸

Resources Available resources 

[46] Distributed-TD3 n Minimize latency 
and energy

𝐸 ↔ 𝐸, 𝐸 ↓ 𝑉 Resources Arrival traffic 

Ours O O MARL (TD3) vs. 
optimization algorithm 1,n* Minimize latency 𝑉 ↑ 𝑅, 𝑅↔ 𝑅, 

𝑅 ↑ 𝐸

Latency Arrival traffic rate, 
Available resources 

The used notation: O = Yes, X = No, C = Cloud, D = Pedestrian Device, E = Edge, I = Infrastructure, R = RSU, V = Vehicle.
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Table 2
Notation definition for V2X with RSU architecture.

Category Notations Meaning Attribute 
Topology 𝑖 Set of RSU sites of each 𝑖th AN-MEC site, 𝑖 = 1,2,3, ...,𝑁 Input 

 Set of AN-MEC site,  = 1,2,3, ...,𝑀 Input 
𝑖,𝑗 Set of 𝑗th RSU’s neighbors within 𝑖th AN-MEC Input 
𝑑AA

𝑖1↔𝑖2
Distance between 𝑖1th AN-MEC and 𝑖2th AN-MEC site Input

Capacity 𝜇A
𝑖

Capacity of 𝑖th AN-MEC site Input 
𝜇R

𝑖,𝑗
Capacity of 𝑗th RSU site of 𝑖th AN-MEC site Input 

𝐵RA
𝑖,𝑗

Uplink bandwidth of 𝑗th RSU site to 𝑖th AN-MEC site Input 
𝐵AR

𝑖,𝑗
Down bandwidth from 𝑖th AN-MEC to 𝑗th RSU site Input 

𝐵RR
𝑖,𝑗↔𝑛

Bandwidth between 𝑗th RSU and 𝑚th RSU site Input 
𝐵VR

𝑖,𝑗
Uplink bandwidth at 𝑗th RSU of 𝑖th AN-MEC site Input 

𝐵RV
𝑖,𝑗

Downlink bandwidth at 𝑗th RSU of 𝑖th AN-MEC site Input

Traffic 𝜆𝑖,𝑗 Arrival task rate at 𝑗th RSU of 𝑖th AN-MEC site Input 
𝜆′

𝑖,𝑗
Response rate at 𝑗th RSU of 𝑖th AN-MEC site Input 

𝜆R
𝑖,𝑗

Traffic that is served at 𝑗th RSU site of 𝑖th AN-MEC Output 
𝜆A

𝑖
Traffic that is served at 𝑖th AN-MEC site Output

Delay 𝑙𝑖,𝑗 Average latency of arrival traffic at 𝑗th RSU of 𝑖th AN-MEC site Input 
𝑙 System average latency Input

Offloading 𝑃 R
𝑖,𝑗

Probability of arrival traffic being served at 𝑗th RSU of 𝑖th AN-MEC site Output 
𝑃 RR

𝑖,𝑗→𝑛
Probability of arrival traffic at 𝑗th RSU of 𝑖th AN-MEC site being offloaded to another 𝑛th RSU site at same AN-MEC Output 

𝑃 A
𝑖,𝑗

Probability of arrival traffic at 𝑗th RSU of 𝑖th AN-MEC site being offloaded to another 𝑖th AN-MEC site Output 
𝑃 AA

𝑖→𝑚,𝑗
Probability of arrival traffic at 𝑗th RSU of 𝑖th AN-MEC site being offloaded to another 𝑚th AN-MEC Output 

Cui et al. [41] proposed a collaborative edge computing scheme, for

mulating the joint optimization of offloading, computation, and delivery 
as a Markov decision process (MDP). They employed a multi-agent deep 
deterministic policy gradient (MADDPG) algorithm to solve this prob

lem, although they did not address task uncertainties where only one 
RSU could handle an offloaded task.

Wei et al. [42] focused on a multi-tier task offloading framework in 
vehicular fog computing (VFC) systems. They designed a multi-agent 
gated actor-critic (MA-GAC) approach to optimize the offloading pro

cess in a distributed manner. Dai et al. [43] addressed multitask of

floading (MTO) by designing a sequence-to-sequence (seq2seq)-based 
meta-reinforcement learning (meta-RL) algorithm. While their approach 
improved task offloading efficiency, it required enormous amounts of 
sampled data for training, leading to reduced sample efficiency. Haz

arika et al. [44] designed a multi-agent RL algorithm to optimize task 
offloading and resource allocation in IoV systems. Their approach mini

mized task completion time by employing vehicle-to-vehicle (V2V) and 
vehicle-to-infrastructure (V2I) offloading strategies.

Generally, MARL approaches suffer from high computational com

plexity, resulting in slower execution times and limiting their effective

ness for real-time V2X applications.

2.4. Advanced RL and DRL-based approaches

In more recent work, advanced RL and deep reinforcement learning 
(DRL) techniques have been proposed to optimize offloading in V2X sys

tems. Qiu et al. [21] formulated an optimization problem to minimize 
total task latency and energy consumption in VEC systems, proposing a 
DDPG-based adaptive computation offloading and power allocation al

gorithm (DDPG-ACOPA). Wu et al. [22] applied DDPG with a multi-head 
self-attention mechanism to minimize latency and energy consumption 
in multi-UAV multi-server MEC systems.

Hu et al. [23] explored integrated sensing and communication (ISAC) 
in V2X MEC networks, optimizing task offloading and resource alloca

tion with a MADDPG-based approach. Cong et al. [24] used a proximal 
policy optimization (PPO) algorithm in multi-user multi-server vehicu

lar networks to reduce system delay, complemented by a power allo

cation algorithm for delay minimization. While these approaches offer 
improved offloading strategies, none of them address ratio-based or hor

izontal task offloading mechanisms.

These studies do not incorporate ratio-based or horizontal offload

ing, limiting their ability to efficiently balance loads between multiple 
RSUs or edge servers.

2.5. Optimization in distributed and cooperative systems

Several recent studies have focused on optimization of distributed 
task offloading in V2X environments. Wang et al. [27] developed a DQN

based algorithm to optimize partial offloading, while Chen et al. [31] 
designed a competitive and cooperative computation offloading model 
(C3O) to minimize task processing delays in VEC networks. Their multi

agent RL-based solution enables vehicles to cooperatively decide the 
optimal offloading policy based on network conditions.

Fan et al. [32] proposed a resource allocation scheme in VEC IoV 
scenarios, using a TD3-based DRL algorithm to minimize processing la

tency and energy consumption. Hou et al. [33] introduced a hierarchical 
VFC system to optimize computational resource allocation, applying a 
counterfactual multi-agent RL algorithm. Ning et al. [34] considered 
joint task offloading and service migration in RIS-assisted VEC systems, 
proposing a DQN-based algorithm to maximize network throughput. Qin 
et al. [35] tackled the problem of air-ground vehicular cooperation by 
combining RSUs and UAVs to minimize delay and energy consumption 
using greedy and MADDPG algorithms.

These works overlook horizontal task offloading, which could further 
improve resource utilization and reduce latency by distributing tasks 
across multiple RSUs and edge servers.

This study introduces a novel approach that enables both horizontal 
and vertical ratio-based offloading within a continuous action space. We 
utilize the TD3 algorithm to effectively manage this offloading, focusing 
on optimizing task distribution to enhance response times and reduce 
the average delay encountered by arriving tasks.

3. V2X with RSU: system and problem formulation

This section describes the V2X architecture, problem formulation, 
and latency models. Table 2 provides notations used for problem for

mulation and latency models.

3.1. V2X with RSU architecture

V2X communication is a key service within the 5G network ecosys

tem, where vehicles are equipped with onboard units (OBUs) to exe
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Fig. 1. V2X with RSU architecture. 

cute various applications. These OBUs communicate with other vehicles 
(V2V), infrastructure such as RSUs, and networks (V2N) including base 
stations [47]. Both RSUs and base stations, referred to in this study 
as RSUs and AN-MECs respectively, are equipped with computing re

sources, enabling task offloading between them to avoid overloading 
any single computing site. This study considers a two-tier computing 
structure comprising RSUs and AN-MECs. In the upper tier, AN-MEC 
servers are placed in 5G base stations, which typically cover up to 30 
km, with the distance between base stations reaching up to 60 km [48]. 
In the bottom tier of the V2X system, vehicles linked to RSUs generate 
numerous tasks via sensors and applications.

The network control plane functions as an offloading agent, manag

ing the distribution of tasks to prevent overload. NFV enables hosting 
the offloading agent either in a CO, which connects several base stations 
with AN-MEC, or collocated with a base station [49]. The first place

ment represents a V2X system with a single offloading agent, while the 
latter represents a V2X system with multiple agents, each covering a 
smaller area, as shown in Fig. 1. In this study, the agent employs the 
TD3 algorithm, using environment information, including computing 
and communication capacities, to determine the optimal offloading ra

tio that minimizes the average latency experienced by vehicles.

Vehicles can vertically offload tasks to a current-connected RSU to 
minimize computing latency. This offloading process is managed by ve

hicle applications, considering their individual computing and energy 
resources, and is beyond the scope of the network control plane prob

lem addressed in this paper. When an RSU becomes overloaded, it can 
offload tasks horizontally to its directly connected neighboring RSUs or 
vertically to an AN-MEC. Similarly, an overloaded AN-MEC can offload 
tasks horizontally to other AN-MECs. These offloading directions are il
lustrated in Fig. 1.

3.2. Latency model

In the V2X-RSU system, traffic computation is offloaded to RSUs and 
AN-MECs to minimize latency and power consumption while utilizing 
abundant computing resources. RSUs extend edge functionalities to ve

hicles, while AN-MECs augment RSU capabilities to handle high traffic 
volumes. The subsequent subsections detail four traffic directions.

1. RSU traffic: The RSU is the initial entity responsible for processing 
tasks upon vehicle arrival, encompassing RSU communication and 
computing latencies. The communication latency of an RSU is in

fluenced by the uplink and downlink bandwidths, denoted by 𝐵VR
𝑖,𝑗

and 𝐵RV
𝑖,𝑗

respectively. The likelihood of traffic being processed by 
a receiving RSU is denoted as 𝑃 R

𝑖,𝑗
. If the number of generated tasks 

surpasses the RSU’s computing capacity, tasks can be offloaded to 
external computing resources at RSU neighbors or AN-MEC sites. 
The latency experienced by traffic served on the 𝑗th RSU connected 
to the 𝑖th AN-MEC is expressed as

𝑙R
𝑖,𝑗

= 1 
𝐵VR

𝑖,𝑗
− 𝜆𝑖,𝑗

+ 1 
𝜇R

𝑖,𝑗
− 𝜆R

𝑖,𝑗

+ 1 
𝐵RV

𝑖,𝑗
− 𝜆′

𝑖,𝑗

, (1)

where

𝜆R
𝑖,𝑗

=𝑃R
𝑖,𝑗

𝜆𝑖,𝑗 +
∑

𝑛∈𝑖,𝑗

𝑃RR
𝑖,𝑛→𝑗

𝜆𝑖,𝑛.

The aggregate traffic reaching the 𝑗th RSU, denoted as 𝜆R
𝑖,𝑗

, includes 
both vertically offloaded traffic from connected vehicles and hori

zontally offloaded traffic from adjacent RSUs.

2. RSU neighbors’ traffic: when the receiving RSU becomes over

loaded, with a probability of 𝑃RR
𝑖,𝑗→𝑛

, tasks are offloaded to RSU 
neighbors. This traffic involves communication latency at the RSU, 
computing latency at the 𝑛th RSU, and communication latency be

tween the 𝑗th and 𝑛th RSUs. RSUs are interconnected via a gigabit 
wired link with maximum bandwidth 𝐵𝑅𝑅

𝑖,𝑗↔𝑛
. The latency experi

enced by arrival traffic served at the 𝑛th RSU neighbor is formulated 
as

𝑙RR
𝑖,𝑗→𝑛

= 1 
𝐵VR

𝑖,𝑗
− 𝜆𝑖,𝑗

+ 1 
𝐵RR

𝑖,𝑗↔𝑛
− 𝑃RR

𝑖,𝑗→𝑛
𝜆𝑖,𝑗

+ 1 
𝜇R

𝑖,𝑛
− 𝜆R

𝑖,𝑛

+

1 
𝐵RR

𝑖,𝑗↔𝑛
− 𝑃RR

𝑖,𝑗→𝑛
𝜆′

𝑖,𝑗

+ 1 
𝐵VR

𝑖,𝑗
− 𝜆′

𝑖,𝑗

, (2)

where

𝜆R
𝑖,𝑛

=𝑃R
𝑖,𝑛

𝜆𝑖,𝑛 +
∑

𝑥∈𝑖,𝑛

𝑃RR
𝑖,𝑥→𝑛

𝜆𝑖,𝑥.

The total traffic arriving at the 𝑛th RSU, 𝜆R
𝑖,𝑛

, is composed of ver

tically offloaded traffic from connected vehicles and horizontal of

floaded traffic from vehicles in neighboring RSUs.

3. AN-MEC Traffic: hotspot traffic may overload some of the RSU sites, 
and some of the traffic can be offloaded to AN-MEC. Traffic from 
𝑗th RSU of 𝑖th AN-MEC has the probability of 𝑃A

𝑖,𝑗
being offloaded 

to the directly connected 𝑖th AN-MEC. Offloaded traffic latency to 
the directly connected 𝑖th AN-MEC site is calculated as RSU uplink

downlink latency + uplink-downlink latency between the 𝑗th RSU 
and the 𝑖th AN-MEC + 𝑖th AN-MEC computing latency and is ex

pressed as

𝑙A
𝑖,𝑗

= 1 
𝐵VR

𝑖,𝑗
− 𝜆𝑖,𝑗

+ 1 

𝐵RA
𝑖,𝑗

−
(
𝑃A

𝑖,𝑗
𝜆𝑖,𝑗 +

∑𝑀

𝑚
𝑃AA

𝑖→𝑚,𝑗
𝜆𝑖,𝑗

)+
1 

𝜇A
𝑖
− 𝜆A

𝑖

+ 1 

𝐵AR
𝑖,𝑗

−
(
𝑃A

𝑖,𝑗
𝜆′

𝑖,𝑗
+
∑𝑀

𝑚
𝑃AA

𝑖→𝑚,𝑗
𝜆′

𝑖,𝑗

)+
1 

𝐵RV
𝑖,𝑗

− 𝜆′
𝑖,𝑗

, (3)

where

𝜆A
𝑖
=

∑
𝑗∈𝑖

𝑃 𝐴
𝑖,𝑗

𝜆𝑖,𝑗 +
∑

𝑚∈∖{𝑖}

∑
𝑗∈𝑚

𝑃 𝐴𝐴
𝑚→𝑖,𝑗

𝜆𝑚,𝑗 .

The total traffic arriving at the 𝑖th AN-MEC, 𝜆A
𝑖

, is comprised of the 
offloaded traffic from its RSU and the horizontal offloaded traffic 
from the RSUs of neighboring AN-MECs.

4. AN-MEC neighboring traffic: Hotspot traffic may overload all RSUs 
of the 𝑖th AN-MEC as well as the 𝑖th AN-MEC site. Some of the 
arrival traffic could be offloaded to AN-MEC neighbors with proba

bility 𝑃AA
𝑖→𝑚,𝑗

. The differences in latency composition with AN-MEC 
traffic, this traffic also experiences propagation latency between 𝑖th 
AN-MEC site and its neighbor, 𝑚th AN-MEC site. So, the latency ex

perienced by the traffic served at the 𝑚th AN-MEC site is formulated 
as

𝑙AA
𝑖→𝑚,𝑗

= 1 
𝐵VR

𝑖,𝑗
− 𝜆𝑖,𝑗

+ 1 

𝐵RA
𝑖,𝑗

−
(
𝑃A

𝑖,𝑗
𝜆𝑖,𝑗 +

∑𝑀

𝑚
𝑃AA

𝑖→𝑚,𝑗
𝜆𝑖,𝑗

)+
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Fig. 2. V2X with RSU notations. 

1 
𝜇A

𝑚
− 𝜆A

𝑚

+ 1 

𝐵AR
𝑖,𝑗

−
(
𝑃A

𝑖,𝑗
𝜆′

𝑖,𝑗
+
∑𝑀

𝑚
𝑃AA

𝑖→𝑚,𝑗
𝜆′

𝑖,𝑗

)+

1 
𝐵RV

𝑖,𝑗
− 𝜆′

𝑖,𝑗

+ 2 ×𝐷AA
𝑖↔𝑚

, (4)

where

𝜆A
𝑚
=

∑
𝑗∈𝑚

𝑃 𝐴
𝑚,𝑗

𝜆𝑚,𝑗 +
∑

𝑖∈∖{𝑚}

∑
𝑗∈𝑚

𝑃 𝐴𝐴
𝑖→𝑚,𝑗

𝜆𝑚,𝑗 .

5. Average V2X with RSU system latency: The average latency of ar

rival traffic at the 𝑗th RSU of the 𝑖th AN-MEC can be determined by 
equations (1), (2), (3), and (4), and weighted by the arrival traffic 
at each site, which is expressed as

𝑙𝑖,𝑗 =
𝑙R
𝑖,𝑗

(
𝑃R

𝑖,𝑗
𝜆𝑖,𝑗

)
+
∑

𝑛∈𝑖∖{𝑗} 𝑙𝑅𝑅
𝑖,𝑗→𝑛

(
𝑃RR

𝑖,𝑗→𝑛
𝜆𝑖,𝑗

)
𝜆𝑖,𝑗

+ (5)

𝑙A
𝑖,𝑗

(
𝑃 𝐴

𝑖,𝑗
𝜆𝑖,𝑗

)
+
∑

𝑚∈∖{𝑖} 𝑙𝐴𝐴
𝑖→𝑚,𝑗

(
𝑃AA

𝑖→𝑚,𝑗
𝜆𝑖,𝑗

)
𝜆𝑖,𝑗

.

Finally, the system’s average latency is calculated by

𝑙 =
∑

𝑖 

∑
𝑗

𝜆𝑖,𝑗 × 𝑙𝑖,𝑗∑
𝑖

∑
𝑗 𝜆𝑖,𝑗

. (6)

3.3. V2X with RSU problem statement

Given some incoming traffic rates, including hotspot traffic in an 
RSU, the control plane of the V2X system determines the best offload

ing ratio. The offloading ratio for each arriving traffic site is depicted 
in Fig. 2 which comprises traffic served, RSU, RSU neighbors, AN-MEC, 
and AN-MEC neighbors. The objective again is to minimize the aver

age latency of the arrival traffic. We dfine the problem as follows: 
input: topology parameters are ,𝑖, and 𝑖,𝑗 ; distance between en

tities 𝑑AA
𝑖1↔𝑖2

; capacity of the system includes 𝜇A
𝑖

, 𝜇R
𝑖,𝑗

, 𝐵RA
𝑖,𝑗

, 𝐵AR
𝑖,𝑗

, 𝐵RR
𝑖,𝑗↔𝑛

, 
𝐵VR

𝑖,𝑗
, and 𝐵RV

𝑖,𝑗
; arrival and response traffic 𝜆𝑖,𝑗 , 𝜆

′
𝑖,𝑗

; current sites and sys

tem average latency 𝑙𝑖,𝑗 , 𝑙. The output is the offloading ratio 𝑃 R
𝑖,𝑗

, 𝑃 RR
𝑖,𝑗→𝑛

, 
𝑃 AA

𝑖,𝑗
, and 𝑃 AA

𝑖→𝑚,𝑗
.

For the problem described, the V2X architecture consists of two tiers 
of computing resources: RSU and AN-MEC. Each of the RSU and AN

MEC sites is equipped with a number of servers with a total capacity of 
𝜇R

𝑖,𝑗
, 𝜇A

𝑖
. The vehicles are connected to the RSU via a wireless link with 

capacity for uplink and downlink communications, denoted by 𝐵VR
𝑖,𝑗

, and 
𝐵RV

𝑖,𝑗
. 𝑖 denotes a number of RSUs connected to the 𝑖th AN-MEC site. 

RSUs are interconnected through gigabit links, the capacity of which is 
represented by 𝐵RR

𝑗↔𝑛
. Because 𝐵RR

𝑗↔𝑛
is limited, we limit the horizontal 

offloading of RSUs to adjacent RSUs within the same AN-MEC. 𝑖,𝑗 is 
a set of 𝑗th RSU’s neighbors connected to 𝑖th AN-MEC site. The up

link and downlink capacities of a communication link between RSU 
and AN-MEC are indicated by 𝐵RA

𝑖,𝑗
, 𝐵AR

𝑖,𝑗
. The propagation latency is 

not considered between RSUs and between RSU and AN-MEC because 
the distance between them is short, between one hundred meters and a 
unit of a kilometer. The propagation latency is considered between the 
AN-MEC sites because the distance between them 𝑑AA

𝑖1↔𝑖2
is large, ap

proximately 10 to 30 km. We ignored the transmission latency between 
the AN-MECs because the links employ fiber optic with terabit capacity, 
which is large enough compared to the arrival traffic.

Arrival traffic, 𝜆𝑖,𝑗 , is generated by vehicles connected to the 𝑗th RSU 
site and the 𝑖th AN-MEC site. Arrival traffic can be handled locally at the 
arrival RSU site with the probability 𝑃 R

𝑖,𝑗
. An overloaded RSU could of

fload some traffic horizontally to its neighbors with probability 𝑃 RR
𝑖,𝑗→𝑛

, 
vertically to a directly linked AN-MEC with probability 𝑃 A

𝑖,𝑗
, and verti

cally to neighboring AN-MEC sites with probability 𝑃 AA
𝑖→𝑚,𝑗

. V2X employs 
single or multiple agents learning in a CO or AN-MEC, respectively. The 
learning agent, which is part of the control plane, uses SA and TD3 al

gorithms to determine the optimal offloading decision to minimize the 
average system latency 𝑙.

4. Ratio-based offloading with TD3 and SA

4.1. TD3-based offloading

Algorithm 1: TD3 [9].

1 Initialize critic network 𝑄𝜃1
,𝑄𝜃2

and actor network 𝜋𝜙 with random 
parameters 𝜃1, 𝜃2, 𝜙𝑖; 

2 Initialize target networks, 𝜃′
1 ← 𝜃1, 𝜃

′
2 ← 𝜃2, 𝜙

′ ← 𝜙; 
3 Initialize replay buffer ; 
4 for t=1 to T do

5 select random action 𝑎𝑖 ∼ 𝜋𝜙(𝑠) + 𝜖, 𝜖 ∼ (0, 𝜎) and observe reward 
𝑟 and new state 𝑠′ ; 

6 Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′) in  ; 
7 Sample mini-batch of 𝑁 transition (𝑠, 𝑎, 𝑟, 𝑠′) from  ; 
8 𝑎̃ ← 𝜋𝜙′ (𝑠′) + 𝜖, 𝜖 ∼ 𝑐𝑙𝑖𝑝( (0, 𝜎̃),−𝑐, 𝑐) ; 

9 𝑦 ← 𝑟+ 𝛾

(
min
𝑖=1,2

𝑄𝜙𝑖

(
𝑠′, 𝑎̃)

))
; 

10 Update critics 𝜃𝑖 ← argmin𝜃𝑖
𝑁−1∑(

𝑦−𝑄𝜃𝑖
(𝑠, 𝑎)

)2
; 

11 if t mod d then

12 Update actor parameter 𝜙 policy gradient: 
∇𝜙𝐽 (𝜙) = 𝑁−1 ∑∇𝑎𝑄𝜃1

(𝑠, 𝑎)|||𝑎=𝜋𝜙(𝑠)
∇𝜙𝜋𝜙(𝑠) ; 

13 Update target network:

14 𝜃′
𝑖
← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′

𝑖
; 

15 𝜙′ ← 𝜏𝜙+ (1 − 𝜏)𝜙′ ; 
16 end

17 end

Fig. 3 illustrates the TD3 structure, consisting of three primary el

ements: environment, agent, and replay buffer. The offloading agent 
utilizes system information states 𝑠, such as computing and communi

cation capacity, to determine the optimal offloading decision 𝑎, resulting 
in a high reward 𝑟 (indicative of low latency), thus altering the system 
condition to 𝑠′. The interactions history (𝑠, 𝑎, 𝑠′, 𝑟) is stored in the replay 
buffer  for the training process outlined in lines 4 to 17 of Algorithm 1.

The training process in the TD3 algorithm initiates with the actor net

work 𝜋𝜙 taking the system state 𝑠 to produce a random action 𝑎, thereby 
transitioning the system state to 𝑠′ . These transactions are saved in  un

til a sufficient number accumulates. The transition batches  are then 
sampled from , and the next action 𝑎̃ is predicted by feeding 𝑠′ into 
the actor target network 𝜋𝜙′ and augmenting it with exploration noise 
𝜖 to enhance learning stability. TD3 utilizes twin critic target networks 
to calculate Q-values, which are derived from the minimum of Q-values 
of twin critic targets multiplied by the discount factor 𝛾 and augmented 
by the current reward 𝑟 to mitigate overestimation.
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Fig. 3. TD3-based offloading structure. 

The target value 𝑦 is calculated as the sum of the current reward 𝑟
and the minimum of the Q-values of the twin-critic targets, scaled by 
the discount factor 𝛾 . Mathematically, it can be expressed as

𝑦 ← 𝑟+ 𝛾

(
min
𝑖=1,2

𝑄𝜙𝑖

(
𝑠′, 𝑎̃)

))
. (7)

This target value 𝑦 serves as a reference for updating the critic models. 
The critic loss is then computed as the mean squared error (MSE) be

tween the target 𝑦 and the Q-values predicted by the twin-critic models 
𝑄𝜃𝑖

(𝑠, 𝑎), facilitating the update of the critic models’ parameters 𝜃𝑖 using 
gradient descent. To maintain stability, the actor and twin-critic target 
networks are updated every 𝑑 iteration through soft updates, adjust

ing their parameters (𝜙, 𝜃1, 𝜃2) by a fraction 𝜏 of their model weights. 
In particular, only a fraction of the parameters are updated at each it
eration. Finally, the actor model is updated through the deterministic 
policy gradient method.

The subsequent subsections formulate the contexts of 𝑠, 𝑎, 𝑟 within 
the framework of V2X with RSU systems.

4.1.1. State

The offloading agent can be deployed either at a centralized 
cloud/CO linked to several base stations with AN-MECs or within each 
AN-MEC connected to multiple RSUs, forming a multi-agent system. This 
paper investigates the impact of single-agent and multi-agent optimiza

tion on offloading. The distinction lies in the coverage area managed by 
the agent: a single-agent covers the entire V2X systems, accommodating 
large input and action sizes, whereas multiple agents reduce coverage, 
resulting in smaller input and action sizes.

The learning agent is trained using prior experiences. The memory 
buffer (memory) stores experiences in the form of state, action, next

state, and reward (𝑠, 𝑎, 𝑠′, 𝑟). The agent will learn what is the best-action 
(offloading ratio) that should be taken given a particular environment’s 
state. The state represents the current system’s status, which is often de

termined by monitoring system parameters such as traffic arrival rate, 
communication capacity, computation capacity, and system latency. 
The action will transition a state from 𝑠 to 𝑠′ with larger or smaller 

Table 3
Observable states of single and multi offloading agents.

Input Single-agent Multi-agent 
𝑇

{
𝜆𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1, 
{

𝜆′
𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1

{
𝜆𝑖,𝑗

}𝑁𝑖

𝑗=1, 
{

𝜆′
𝑖,𝑗

}𝑁𝑖

𝑗=1

𝐶
{
𝜇A

𝑖

}𝑀

𝑖=1 ,

{
𝜇R

𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1
𝜇A

𝑖
,

{
𝜇R

𝑖,𝑗

}𝑁𝑖

𝑗=1

𝑁

{
𝐵RR

𝑖,𝑗↔𝑛
,𝐵RA

𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1,{
𝐵AR

𝑖,𝑗
,𝐵VR

𝑖,𝑗
,𝐵RV

𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1,

{
𝐵RR

𝑖,𝑗↔𝑛
𝐵RA

𝑖,𝑗

}𝑁𝑖

𝑗=1{
𝐵AR

𝑖,𝑗
,𝐵VR

𝑖,𝑗
,𝐵RV

𝑖,𝑗

}𝑁𝑖

𝑗=1,

𝐿
{
𝑙𝑖,𝑗

}𝑀,𝑁𝑖

𝑖=1,𝑗=1

{
𝑙𝑖,𝑗

}𝑁𝑖

𝑗=1

latency. The optimal action minimizes the average system latency and 
is rewarded positively.

The following states constitute the V2X system information: arrival 
and response traffic rate (𝜆𝑖,𝑗 , 𝜆

′
𝑖,𝑗

), computing resources (𝜇R
𝑖,𝑗

, 𝜇A
𝑖

), com

munication resources (𝐵VR
𝑖,𝑗

, 𝐵RV
𝑖,𝑗

, 𝐵RR
𝑖,𝑗↔𝑛

, 𝐵AR
𝑖,𝑗

, 𝐵RA
𝑖,𝑗

), system latency 
(𝑙𝑖,𝑗 ). State arrays are constructed from the states and can be used as 
inputs to policy and Q-value networks.

Table 3 presents a comparison of observable system states between 
single and multi-o˙loading agents in the V2X with RSU system. 𝑇 de

notes a set of arrival and response traffic rates for all vehicles. 𝐶 rep

resents arrays that contain information on computing capabilities in 
vehicles, RSU sites, and AN-MECs. Similarly, 𝑁 is an array that con

tains information on the capacity of communication links, which varies 
over time in response to traffic arrival and response rates. 𝐿 denotes the 
average latency across all sites. 𝑇 ,𝐶,𝑁 , and 𝐿 are combined to form 
the environment state,

𝑠 = [𝑇 ,𝐶,𝑁,𝐿] . (8)

4.1.2. Action

Action represents the offloading ratio at V2X with RSU which de

rives some probability of offloaded traffic destinations formulated as 
local RSU (𝑃 R

𝑖,𝑗
), RSU neighbors (𝑃 RR

𝑖,𝑗→𝑛
), AN-MEC (𝑃 A

𝑖,𝑗
), and AN-MEC 

neighbors (𝑃 AA
𝑖→𝑚,𝑗

). The total load ratio of each arrival traffic rate at 
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Fig. 4. Multi-agent TD3 structure. 

𝑗th RSU of 𝑖th AN-MEC site is one, 𝑃 R
𝑖,𝑗

+
∑

𝑛∈𝑖∖{𝑗} 𝑃 RR
𝑖,𝑗→𝑛

+ 𝑃A
𝑖,𝑗

+∑
𝑚∈∖{𝑖} 𝑃 AA

𝑖→𝑚,𝑗
= 1. The action set, which is a product of the actor’s 

network, is denoted by

𝑎 =
{

𝑃 R
𝑖,𝑗

, 𝑃 RR
𝑖,𝑗→𝑛

, 𝑃A
𝑖,𝑗

, 𝑃 AA
𝑖→𝑚,𝑗

,∀𝑛 ∈𝑖∖{𝑗},∀𝑚 ∈∖{𝑖}
}𝑀,𝑁𝑖

𝑖=1,𝑗=1
(9)

for single-agent TD3 which the agent is hosted in a centralized CO con

nected to some AN-MEC sites. In multi-agent TD3, each agent is hosted 
at an AN-MEC site and is only responsible for offloading decisions that 
belong to the 𝑖th AN-MEC, which includes all RSU sites connected to it,

𝑎 =
{

𝑃 R
𝑖,𝑗
;𝑃 RR

𝑖,𝑗→𝑛
;𝑃A

𝑖,𝑗
;𝑃 AA

𝑖→𝑚,𝑗
,∀𝑛 ∈𝑖∖{𝑗},∀𝑚 ∈∖{𝑖}

}𝑁𝑖

𝑗=1
. (10)

4.1.3. Reward

We do not train the agent by creating a best-action direction using 
labeled data, but rather by generating a reward signal to represent the 
quality of the action taken. A positive reward is assigned to actions that 
contribute to achieving the system’s objectives, while actions that do 
not are penalized with a negative reward. The objective of RL is to max

imize this reward. Given that the goal of offloading optimization is to 
minimize average latency, the reward for an action taken at time 𝑡 is 
dfined as

𝑟 = 1
𝑙
, (11)

where 𝑙 is derived from equation (6).

4.1.4. Multi-agent structure

The agent utilizes Neural Networks (NN) for actor models, actor tar

gets, twin critic models, and twin critic targets, interacting with the en

vironment during execution to determine the offloading ratio using the 
actor model. The history of the interaction is stored in the replay buffer 
as tuples of state, action, subsequent state, and reward (𝑠𝑡, 𝑎𝑡, 𝑠

′, 𝑟). TD3 
combines value and policy approaches, optimizing actor model parame

ters for the best offloading decision and producing Q-values for expected 
returns with critic models. Twin-critic models prevent Q-value overes

timation, updating policy parameters using gradient descent. The actor 
and critic targets remain constant for some iterations for stable learning. 
Additionally, this study compares single-agent and multi-agent RL, eval

uating large systems with a single agent and small systems with multiple 
agents, with differences in the observation state and action space each 
agent collects.

In the execution time, as depicted in Fig. 4, the policy network of a 
multi-agent RL (𝜋) observes the environment locally to determine a local 
offloading ratio (offloading ratio of an MEC site). All offloading agents’ 
policies and Q-value networks will be updated via a training procedure 
incorporating global system data. This global information consists of the 
previous data of all agents, which is stored in a replay buffer. An offload

ing agent must determine the offloading ratios for all MEC sites after 
observing the global environment state in single-agent RL. This requires 

Fig. 5. Ratio-based offloading actor model. 

a large input space from the global observation and a large action space 
for all MEC sites’ offloading ratios. Like multi-agent RL, single-agent pol

icy and Q-value networks are trained using previous data collected in a 
replay buffer.

To minimize the system latency 𝑙, V2X with RSU offloading agent 
determines the optimal offloading decision. The objective is then ex

pressed as a reward function of the RL environment, as illustrated by 
equation (11). The TD3 algorithm employed by the offloading agent 
maximizes the system’s reward. 

As illustrated in Fig. 3, each V2X agent with RSU offloading uses 
six NNs for two actor networks (model and target) and four critic net

works (twin models and twin targets). The actor model is responsible 
for determining the optimal offloading ratio. This ratio includes both 
the destination of the offloaded traffic (vertical and horizontal direc

tions) and the amount of traffic that will be offloaded. The offloading 
ratio in a single-agent environment is expressed by equation (9). While 
the offloading ratio for multiple agents is given by equation (10).

Since ratio-based offloading is considered in V2X with RSU, the Soft

max activation function is used for policy or actor networks. The output 
of the Softmax function is a categorical distribution that classfies the in

put. In our case, the class denotes the destination for offloading. While 
a class’s cofidence ratio represents the offloading ratio to an RSU/AN

MEC site, Fig. 5 depicts the structure of actor networks for single-agent 
and multi-agent RL. In the execution phase, the single-agent actor net

work uses the global state, as dfined by equation (8), as input to de

termine the global action, which consists of the offloading ratio of all 
offloading destinations. To compute the local offloading ratio at -MEC 
site, a multi-agent actor network utilizes local state information about 
entities that may become the offloading destination for the 𝑗th RSU task. 
Because they are not the offloading destination, an agent does not need 
to maintain information on another RSU belonging to another AN-MEC. 
The input and output space of the multi-agent actor’s network is smaller 
than that of the single-agent actor’s network.

4.2. SA-based offloading

SA is a global optimization technique inspired by metallurgical an

nealing. SA avoids local optima that may occur in the Genetic and 
Particle-Swarm algorithms by allowing for certain, less desirable solu

tions in a controlled manner via probability [50].

Algorithm 2 dictates the decision-making process of the offloading 
agent in each RSU, optimizing the offloading ratio based on the initial 
observable states, such as system state/information (𝑠). The algorithm 
begins by defining an initial action (𝑎) and calculating the corresponding 
reward (𝑟), to minimize the average latency experienced by UEs.

During each iteration, a new action (𝑎𝑛𝑒𝑤) is selected. This selection 
involves transferring a random fraction of tasks, multiplied by a prede

termined step size (𝛼), from the source RSU site to a randomly chosen 
MEC site. Subsequently, the performance of the new solution (𝑟𝑛𝑒𝑤) is 
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Algorithm 2: Simulated Annealing.

Input: system observable states (𝑠)

Result: optimized offloading ratio 𝑎
1 Initialize action: randomly generate offloading ratio 𝑎; 
2 Initialize reward: 𝑟= 𝑓 (𝑠, 𝑎); 
3 Initialize parameters: temperature 𝑇 , Boltzmann’s constant 𝑘, reduction 

factor 𝑐; 
4 for each AN-MEC site (𝑀) do

5 for each RSU site (𝑁𝑖) do

6 for each temperature iteration (𝑅) do

7 for each neighbor to visit (𝑆) do

8 Select a new action 𝑎𝑛𝑒𝑤 = 𝑓 (𝑎, 𝛼); 
9 𝑟𝑛𝑒𝑤 = 𝑓 (𝑠, 𝑎𝑛𝑒𝑤); 

10 if 𝑟𝑛𝑒𝑤 > 𝑟 then

11 𝑟 = 𝑟𝑛𝑒𝑤; 
12 𝑎 = 𝑎𝑛𝑒𝑤𝑎𝑛𝐴𝑁 ; 
13 else

14 Δ𝑟 = 𝑟𝑛𝑒𝑤 − 𝑟; 
15 𝑟𝑎𝑛𝑑 ← random(0,1); 
16 if 𝑟𝑎𝑛𝑑 <

1 
𝑒

( Δ𝑟 
𝑘𝑇

) then

17 𝑟 = 𝑟𝑛𝑒𝑤 ; 
18 𝑎 = 𝑎𝑛𝑒𝑤; 
19 else

20 𝑟 = 𝑟; 
21 𝑎 = 𝑎; 
22 end

23 end

24 end

25 Decrease the temperature periodically: 𝑇 = 𝑐 × 𝑇 ; 
26 end

27 end

28 end

compared to that of the previous solution (𝑟), with Δ𝑟 = 𝑟𝑛𝑒𝑤 − 𝑟. If the 
previous solution proves superior, it is retained; otherwise, the new so

lution is selected with a probability determined by equation (12):

1 

𝑒

(
Δ𝑟 
𝑘𝑇

) (12)

where 𝑘 and 𝑇 denote Boltzmann’s constant and temperature, respec

tively.

If the result of equation (12) exceeds a random float between (0,1), a 
poor decision can be made. Otherwise, the previous solution is preserved 
if it is superior to the new one. SA is more likely to accept a suboptimal 
solution at high temperatures and is less likely to accept a suboptimal 
solution at low temperatures [51].

5. Simulations and results

5.1. Simulation setup and experimental settings

V2X with RSU is a system with hundreds to thousands of computing 
and communication resources. The cost of constructing a testbed for of

floading optimization research is expensive. Since the primary purpose 
of the proposal is to compare traditional optimization with RL-based of

floading techniques, simulation may be a more cost-effective option to 
create a testbed. In addition, the real network control plane utilizes net

work abstractions comparable to simulation models and optimization 
techniques based on these abstractions.

The simulation environment is written in Python and runs on a 
Core i7 10th gen processor with 16 GB RAM and an RTX2060s GPU. 
Table 4 details the simulation parameters, classfied as topology, RAN 
and site capacities, and traffic. The topology settings are designed to ap

proximate real system implementations, considering factors such as the 
distances between entities, and computing and communication capac

ities. Entities are distributed in an area using a geographic coordinate 
sampling application (https://epitools.ausvet.com.au/rgcs). Link capac

ity in packets/s is calculated by dividing the bandwidth by 𝑝. Ten ex

periments were conducted for each scenario and algorithm. Each TD3 
iteration comprised 10,000 episodes with 10 steps each, representing 
various states of system utilization. The SA iteration depends on the 
number of AN-MECs, RSUs, temperatures 𝑀 , and neighbors visited 𝑁 .

Table 5 and Table 6 detail the settings for the SA and TD3 algo

rithms, with Optuna used to optimize these settings [52]. Offloading 
agents are implemented in Python and employ random, SA, and TD3 al

gorithms. We used the Python random library to generate the offloading 
agents for the random algorithm. We examine the impact of the system 
size on the number of agents and the above-mentioned algorithms using 
various numbers of AN-MEC sites.

5.2. Preliminary comparison of reinforcement learning algorithms

For the preliminary analysis, we compared RL algorithms for contin

uous search space problems such as DDPG, SAC, and TRPO in the context 
of V2X with RSU ratio-based offloading optimization. Fig. 6a compares 
the performance of four RL algorithms—TD3, DDPG, SAC, and TRPO�-

on an offloading optimization task. TD3 shows superior performance, 
converging to higher rewards with a better learning rate, due to its use 
of two critics to mitigate overestimation bias. SAC performs stably with 
minimal variance, maintaining a consistent reward level throughout. 
DDPG, while highly unstable early on, improves over time and eventu

ally surpasses SAC, making it suitable for tasks that can tolerate initial 
instability in favor of higher long-term rewards. TRPO, though slow to 
improve, reaches a final reward level comparable to SAC and DDPG, 

Table 4
Parameter setting.

Parameters Notations Values 
Topology:

Number of AN-MEC sites 𝑀 1,2,3,4,5 
Number of RSU sites at 𝑖th AN-MEC 𝑁𝑖 9 
Number of vehicles at 𝑗th RSU of 𝑖 AN-MEC 𝑉𝑖,𝑗 {10 ≤ 20},{20 ≤ 30},{30 ≤ 40},{40 ≤ 50}
Total number of sites 𝑀(𝑁𝑖) 10, 20, 30, 40, 50 
Distance between AN-MECs 𝑑AA

𝑖↔𝑚
≈ 30km − 60km

RAN capacity:

Uplink, downlink on RSUs site 𝐵VR
𝑖,𝑗

,𝐵RV
𝑖,𝑗

10 Gbps 
Bandwidth between RSUs 𝐵RR

𝑖,𝑗↔𝑛
10 Gbps 

Uplink, downlink between RSU and AN-MEC 𝐵RA
𝑖,𝑗

,𝐵AR
𝑖,𝑗

10 Gbps

Site capacity:

AN-MEC site 𝜇A
𝑖

30 × 104𝑃𝑎𝑐𝑘𝑒𝑡𝑠∕𝑠
RSU 𝜇R

𝑖,𝑗
3 × 104𝑃𝑎𝑐𝑘𝑒𝑡𝑠∕𝑠

Traffic:

Normal traffic rate 𝜆𝑖,𝑗 {10 ≤ 100}
Packet size p 1Kb (request), 10 Kb (response) 
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Fig. 6. Comparison of RL-Based Algorithms for Ratio-Based Offloading Optimization in V2X. 

Table 5
SA algorithm settings.

Parameters Value 
Initial temperature (𝑇 ) 5000 
Number of temperatures (𝑅) 300 
Neighbors to visit at a temp. (𝑆) 30 
Cooling parameter (𝑐) 0.85 
Search step (𝛼) 0.1 

Table 6
TD3 algorithm settings.

Parameters Value 
Actor and Critic networks parameters

Number of hidden layer 2 
Number of head layer 3 
Activation function Softmax 
Input Actor network Current observation 
Output of the Actor Offloading ratio 
Input Critic networks Batch states and actions 
Output of the Critics Q-value

Training parameters

Optimizer ADAM 
Batch size 32 
Exploration noise 0.1 
Discount (𝛾) 0.99 
Tau (𝜏) 0.005 
Policy noise (𝜖) 0.05 
Noise clip 0.5 
Policy frequency 4

Experiment setups

Number of episodes 10000 
Number of steps each episode 10 
Number of experiments 10 

indicating it is better suited for tasks prioritizing stability over rapid 
optimization.

The analysis of RL algorithms’ scalability (TD3, TRPO, DDPG, and 
SAC) in Figs. 6b, 6c, and 6d reveals key insights as the number of MEC 
sites increases. TD3 consistently achieves the highest rewards up to 50 
MEC sites, with a peak reward of 1.66, but experiences a sharp decline 
to 0.31 at 80 sites and 0.15 at 100 sites. This drop is due to the increas

ing complexity of the state and action space, as the growing number 
of sites expands the capacity and latency information fed to the actor 
and critic networks, while the action space also scales. The actor net

work, using a Softmax output, must adjust to the higher-dimensional 
action space where each output element represents the ratio of traffic 
offloaded to a site, complicating optimization. SAC exhibits a similar 
pattern, peaking at 1.62 at 50 sites but dropping to 0.19 at 100 sites, 
indicating that both algorithms struggle with scalability as the number 
of MEC sites increases. In contrast, DDPG peaks unexpectedly at 1.52 
at 30 sites, only to plummet to 0.01 by 80 sites, due to its single-critic 
structure, which makes it prone to ovefitting and less capable of manag

ing the increasing complexity of the state-action space. TRPO, though 
slower to improve, reaches comparable rewards to SAC and DDPG at 
higher site counts (approximately 0.42 at 80 and 100 sites), suggest

ing that while its conservative policy updates may slow progress, it may 
better accommodate the complexities of larger environments.

When evaluating decision time (Fig. 6c), TRPO exhibits inefficiency 
with a significant spike to 0.037 ms at 80 sites, indicating that its 
decision-making process struggles with scalability due to the complex

ity of updating its policy structure as the action space increases. In 
contrast, TD3, SAC, and DDPG show more consistent and predictable in

creases in decision time, with SAC having the lowest values at higher site 
counts (e.g., 0.015 ms at 100 sites). However, the differences between 
TD3, SAC, and DDPG remain minor, suggesting that all three algorithms 
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Fig. 7. Decision time. 

maintain reasonable efficiency in real-time decision-making even as the 
number of MEC sites increases.

Finally, in terms of convergence time (Fig. 6d), TD3 exhibits rel

atively low convergence times, even with increasing site counts (e.g., 
2325 s at 100 sites), making it more practical in terms of training ef

ficiency. SAC, however, shows dramatically longer convergence times, 
especially beyond 50 sites (e.g., 34159 s at 100 sites), indicating that 
its training complexity grows significantly with scalability. DDPG and 
TRPO also show longer convergence times at higher site counts, though 
TRPO manages better than DDPG in environments with a larger number 
of sites. This indicates that while SAC and TD3 have strengths in deci

sion time, their convergence time makes TD3 a better choice overall in 
large-scale scenarios where faster training is critical.

5.3. Evaluation of SA and TD3 for ratio-based offloading in V2X systems 
with RSU

The experimental results are organized to address the following key 
aspects: decision time, convergence time, decision quality, and offload

ing with unknown parameters, comparing RL and SA in each case, as 
well as the comparison between single-agent and multi-agent offload

ing.

5.3.1. Decision time

Decision time refers to the duration an agent needs to determine an 
offloading action. As a control plane component, the offloading agent 
must forward traffic or tasks within seconds to accommodate fluctuating 
traffic arrival rates. This study compares the decision times of TD3, SA, 
and random-based algorithms in determining the offloading ratio.

As illustrated in Fig. 7, SA required 602 to 20,421 seconds to cal

culate the offloading ratio for a V2X system with 10 to 50 sites using 
exhaustive searching. This decision time far exceeds the control plane’s 
requirements. In contrast, single-agent and multi-agent TD3 could map 
the input to an offloading ratio within 4 to 24 milliseconds and 0.8 
to 3 milliseconds, respectively, for V2X systems with 10 to 50 sites. 
This meets control plane requirements and is five orders of magnitude 
faster than SA. TD3-based agents can simultaneously decide and train 
the offloading model, using neural networks to map the information 
of the system to the offloading ratio. A random agent, employing a 
random-based algorithm, decided the offloading ratio within 46 to 95 
microseconds. However, due to its random nature, it can assign traffic 
to a site with insufficient capacity.

We compared the three algorithms on various scales of the system, af

fecting the input and output sizes, as shown in Fig. 8 a and b. In Fig. 8a, 
the state represents the information of the V2X system, including the 
communication and computation capacity, which is used by the agent 
as input to decide the best action in the form of offloading ratios. Multi

Fig. 8. State and action space comparison. 

agent systems consider local environment states within an AN-MEC site 
to decide an action, thereby showing the least input size.

Fig. 8b shows the agent action size, which represents the offload

ing ratio. This ratio describes the proportion of traffic offloaded to RSU 
and AN-MEC sites. In a single-agent setup, placed in the CO, the agent 
decides the offloading ratio for all RSUs. Conversely, in a multi-agent 
setup, each agent is collocated with an AN-MEC and decides the offload

ing ratio for all RSUs within an AN-MEC site. This cofiguration results 
in smaller output sizes for multi-agents. The smaller input and output 
sizes of the multi-agent system also contribute to significantly reduced 
decision times, approximately one order of magnitude lower than the 
single-agent system.

5.3.2. Convergence time

Convergence time is the amount of time required for an algorithm to 
produce optimal results with the lowest average latency. Fig. 9 depicts a 
comparison of the convergence time between SA and TD3. In the begin

ning, the TD3-agent utilized weightedan ANng because depending on a 
random float to determine the initial offloading ratio would require a 
momentous time to converge.

As illustrated in Fig. 9, TD3’s convergence time is one order of mag

nitude faster than that of SA due to the model’s pre-training using 
weighted-based offloading. Single-agent and multi-agent systems TD3 
required 283 and 89 seconds, respectively, to converge in the V2X sys

tem with 10 sites and 764 and 178 seconds with 50 sites. In contrast, 
SA required 2,205 and 20,421 seconds to converge in systems with 10 
and 50 sites, respectively.
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Fig. 9. Convergence time. 

The SA runs for each AN-MEC (𝑀), and for each base station, the 
algorithm visits each RSU (𝑁). Inside, it runs for 𝑅 iterations (tempera

ture decreases), and for each iteration, it performs 𝑆 neighbor searches. 
Each search involves capacity evaluation and residual capacity calcu

lations, which are linear in the number of RSUs and AN-MECs. Thus, 
the overall time complexity is 𝑂(𝑀 × 𝑁 × 𝑅 × 𝑆 × (𝑀 + 𝑁)), simpli

fied to 𝑂(𝑀 ×𝑁2 ×𝑅×𝑆) when considering the dominant terms. This 
complexity rflects the combinatorial nature of the offloading decision 
problem and the iterative nature of the simulated annealing process. The 
SA’s convergence time increased significantly as the number of sites in

creased. TD3-based offloading uses NN, whose complexity depends on 
the number of inputs 𝑛, epochs 𝑡, and the number of hidden layers 𝑘. 
Within the NN layer, there is a matrix multiplication with a complex

ity of 𝑚3, where 𝑚 is the size of the matrices that are multiplied. The 
complexity of NN training is 𝑂(𝑛𝑡(𝑘𝑚3)) or 𝑂(𝑛𝑡(𝑚3)) if the constant 
𝑘 is removed. The NN operation has a linear relationship with the in

put 𝑛. As depicted in Fig. 9, the decision time of the TD3 offloading 
agent increased slightly as the number of sites increased. In this study, a 
weighted-based offloading algorithm is used instead of the random ac

tion typically used by the RL algorithm in the initial training iterations 
to collect experience data.

5.3.3. Decision quality

The performance of the offloading agent is measured by the average 
latency, dfined as the time it takes for all traffic sent by vehicles to re

ceive a response. To measure the agent’s performance, we dfined four 
arrival traffic scenarios. Each scenario consists of a different number of 
vehicles that generate traffic to the RSU. We do not impose decisions on 
vehicles since they have limited resources, and determining the offload

ing ratio involves energy-intensive environmental monitoring. In this 
instance, the environment data are fairly broad and include fog (RSU) 
and edge information (AN-MEC).

Fig. 10 compares the performance of SA and TD3-based offloading 
agents. The SA that performs extensive searching has the highest per

formance, requiring 0.18 and 0.32 seconds to serve 10-20 and 40-50 
vehicles, respectively. Single-agent TD3 had an average latency of 0.26 
ms and 0.5 ms for serving 10-20 and 40-50 vehicles, respectively. In 
comparison, multi-agent TD3 had a lower average latency of 0.22 ms 
and 0.45 ms for the same vehicle ranges.

The average latency of the single-agent and multi-agent TD3 is only 
0.2 and 0.1, greater than that of the SA. Due to their low propagation 
delay, nearby available resources are more likely to be offloaded than 
distant ones. The multi-agent TD3 that utilizes local data is more effi

cient than the single-agent TD3 that utilizes global data. An offloading 
agent may not require specific information, such as information on a re

mote RSU site. This useless feature is eliminated, making the training 
process more efficient and producing better outcomes than single-agent 
TD3.

To train the TD3 models, the multi-agent utilized a centralized re

play buffer. Fig. 11 compares the performance of the multi-agent using a 

Fig. 10. O˙loading performance. 

Fig. 11. Single vs. multi-buffer performance. 

centralized replay buffer with those using single-replay and multi-replay 
buffers. Using multi-replay buffers in the multi-agent system introduces 
unknown information from traffic offloaded from other agent coverage, 
such as traffic from other AN-MEC sites. As the number of sites in

creases, the unknown information also increases, resulting in degraded 
performance. Fig. 11 illustrates that using multi-replay buffers causes 
the performance of the multi-agent to degrade by almost half compared 
to using a single buffer.

Fig. 12 shows the traffic distributions for all offloading agents. When 
the number of vehicles increased, more traffic is directed to AN-MEC 
sites by SA and multi-agent TD3. In terms of computing latency, a cen

tralized large capacity such as AN-MEC outperforms a distributed with 
small capacity such as RSU [53]. SA, with the best performance, directed 
52% traffic to AN-MEC sites, and 48% is served in RSUs in serving 40-50 
vehicles. With a ratio of 66%:34%, single-agent TD3 sent a large amount 
of traffic to RSUs. In contrast, multi-agent TD3 sent a high proportion of 
traffic to AN-MEC sites (36%:64%). In this optimization, directing traf

fic to upper tiers will increase propagation latency, while directing a 
high volume of traffic to lower tiers increases computation latency due 
to the lower capacity of the bottom tier. Finding the correct balance of 
referred traffic leads to optimal performance.

The RSU has a capacity that is ten times smaller than that of the AN

MEC. As a result, when vehicle traffic is directed to the RSU, it quickly 
becomes occupied, resulting in a low horizontal offloading ratio (H-R), 
as shown in Fig. 13. The horizontal offloading between RSUs is less than 
10%. For single-agent TD3, the percentage of traffic served at the arrival 
RSU (V-R) is 45%, while it is 47% for multi-agent TD3 and 29% for SA. 
However, AN-MEC sites are preferred due to their higher capacity, prox

imity to users, and centralization, and therefore, the total traffic served 
at AN-MEC sites managed by SA and multi-agent TD3 is higher than 
at RSU sites. This traffic includes both vertical (V-AN) and horizontal 
(H-AN) offloading to AN-MEC sites.
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Fig. 12. Tra˙ic distribution. 

Fig. 13. O˙loading ratio. 

5.3.4. Decision with unknown information

The agent may encounter unknown information, such as fluctuating 
heavy traffic when trained on light traffic. When the environment state 
changes, conventional optimization recalculates the offloading decision. 
Fig. 14 shows the responsiveness to traffic fluctuations. In Fig. 14a, the 
TD3 model trained on light traffic handles heavy traffic fluctuations, 
whereas in Fig. 14b, the TD3 model trained on heavy traffic manages 
incoming light traffic.

The model trained to handle heavy traffic is more transferable to 
light traffic than the model trained to handle light traffic to heavy traf

fic. 14a demonstrates the failure of the light traffic model of single-agent 
and multi-agent TD3 to handle heavy arrival traffic. The latency gap be

tween the correct model and the light model is up to 0.28 milliseconds.

In contrast, the decision made by the model trained by heavy traffic 
had better performance than the original one, shown in 14b of single

agent TD3. Serving heavy arrival traffic from 30-40 vehicles and 40-50 
vehicles, the performance of the multi-agent TD3 model trained with the 
heavy model is essentially equal to that of the model trained with the 
specfied arrival rate. However, when the model is applied to low arrival 
rates with 10-20 and 20-30 vehicles, it performs worse than the correct 
model. This may be due to the different traffic patterns caused by the 
random number of vehicles that generate traffic to specific locations.

6. Conclusion

In the V2X with the RSU system, an AN-MEC placed at the base sta

tion could extend the RSU to create a two-tier fog-edge architecture. 
Offloading is important for distributing arriving traffic within the system 
and reducing the average delay. Offloading was addressed as a control 
plane problem with a short decision time to accommodate hotspot traf

fic. TD3 with NN to map the input to offloading ratio has a decision time 
of unit milliseconds, which is five orders of magnitude faster than SA. 
The latter takes 602 to 20,421 seconds to determine the offloading ratio, 

Fig. 14. Effect of fluctuating traffic to the agent model. 

which may be too slow for future traffic. Single-agent TD3 decides the 
offloading ratio in 4 to 24 milliseconds for systems with 10 and 50 sites, 
respectively. Multi-agent TD3, with smaller input and output, has even 
faster decision times of 1 and 3 milliseconds. In all traffic scenarios, the 
average latency experienced by the arrival traffic using SA was 0.18 to 
0.32 milliseconds. By initial training using weighted-based offloading, 
TD3 can approximate SA’s performance. The average latency for single

agent TD3 was 0.26 to 0.5 milliseconds, while that of multi-agent TD3 
was 0.22 to 0.45 milliseconds. In TD3-based agents, the model trained 
by heavy traffic is more adaptable to other traffic patterns. Most of the 
traffic was forwaran ANites, which are more centralized, have greater 
capacity than RSU, and are also closer to users (vehicles). Due to the 
small capacity of the RSU, the horizontal offloading ratio between them 
is also modest.

For future work, addressing the longer convergence times in early 
iterations of RL by incorporating imitation learning could streamline 
the process. Furthermore, validating these models through real testbed 
experiments will be crucial to assessing their practical efficacy in V2X 
scenarios. Exploring the impact of power consumption on offloading 
strategies and integrating it as a key metric will enhance the sustain

ability and efficiency of V2X systems.

CRediT authorship contribution statement

Widhi Yahya: Writing -- original draft, Visualization, Software, 
Methodology, Investigation, Formal analysis. Ying-Dar Lin: Validation, 

Vehicular Communications 51 (2025) 100862 

13 



W. Yahya, Y.-D. Lin, F. Marzuk et al. 

Supervision, Methodology, Conceptualization. Faysal Marzuk: Writing 
– review & editing, Validation, Methodology. Piotr Chołda: Validation, 
Supervision, Formal analysis. Yuan-Cheng Lai: Supervision, Methodol

ogy, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to ifluence 
the work reported in this paper.

Acknowledgement

This work was supported in part by the National Science and Tech

nology Council, Taiwan, under grants 111-2221-E-A49-095-MY3, and 
in part by the PL-Grid infrastructure: http://www.plgrid.pl/en.

Data availability

No data was used for the research described in the article.

References

[1] M.H. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Sahin, A. 
Kousaridas, A tutorial on 5G NR V2X communications, IEEE Commun. Surv. Tutor. 
23 (2021) 1972--2026.

[2] M. Harounabadi, D.M. Soleymani, S. Bhadauria, M. Leyh, E. Roth-Mandutz, V2X in 
3GPP standardization: NR sidelink in release-16 and beyond, IEEE Commun. Stand. 
Mag. 5 (1) (2021) 12--21.

[3] ETSI, 5G; Vehicle-to-everything (V2X); Media handling and interaction (3GPP TR 
26.985 version 16.0.0 Release 16), Technical Report ETSI TR 126 985 V16.0.0, Eu

ropean Telecommunications Standards Institute, April 2020.

[4] P.L. Nguyen, R.H. Hwang, P.M. Khiem, K. Nguyen, Y.D. Lin, Modeling and minimiz

ing latency in three-tier V2X networks, in: Proceeding of IEEE Global Communica

tions Conference, GLOBECOM 2020 2020-January, 12 2020.

[5] S. González, A. de la Oliva, X. Costa-Pérez, A. Di Giglio, F. Cavaliere, T. Deiß, X. 
Li, A. Mourad, 5G-Crosshaul: an SDN/NFV control and data plane architecture for 
the 5G integrated Fronthaul/Backhaul, Trans. Emerg. Telecommun. Technol. 27 (9) 
(2016) 1196--1205.

[6] 3rd Generation Partnership Project (3GPP), 5G; Service requirements for next gen

eration new services and markets, Technical Specfication 3GPP TS 22.261, 3GPP, 
release 15, 2018.

[7] A. Shakarami, M. Ghobaei-Arani, A. Shahidinejad, A survey on the computation 
offloading approaches in mobile edge computing: a machine learning-based per

spective, Comput. Netw. 182 (2020) 107496.

[8] B. Kar, W. Yahya, Y.-D. Lin, A. Ali, Offloading using traditional optimization and 
machine learning in federated cloud–edge--fog systems: a survey, IEEE Commun. 
Surv. Tutor. 25 (2) (2023) 1199--1226.

[9] S. Fujimoto, H.V. Hoof, D. Meger, Addressing function approximation error in actor

critic methods, in: 35th International Conference on Machine Learning, ICML 2018 
4, 2018, pp. 2587--2601.

[10] C. Sonmez, C. Tunca, A. Ozgovde, C. Ersoy, Machine learning-based workload or

chestrator for vehicular edge computing, IEEE Trans. Intell. Transp. Syst. 22 (2021) 
2239--2251.

[11] S. Zhou, Y. Sun, Z. Jiang, Z. Niu, Exploiting moving intelligence: delay-optimized 
computation offloading in vehicular fog networks, IEEE Commun. Mag. 57 (2019) 
49--55.

[12] H. Ke, J. Wang, L. Deng, Y. Ge, H. Wang, Deep reinforcement learning-based adaptive 
computation offloading for MEC in heterogeneous vehicular networks, IEEE Trans. 
Veh. Technol. 69 (2020) 7916--7929.

[13] J. Shi, J. Du, J. Wang, J. Yuan, Deep reinforcement learning-based v2v partial com

putation offloading in vehicular fog computing, in: 2021 IEEE Wireless Communica

tions and Networking Conference (WCNC), vol. 2021-March, Institute of Electrical 
and Electronics Engineers Inc., 2021, pp. 1--6.

[14] D. Yang, B. Ni, H. Qin, F. Ma, Adaptive Task Offloading in V2X Networks Based on 
Deep Reinforcement Learning, SPIE-Intl Soc Optical Eng, 2022, pp. 579--590.

[15] W. Chen, X. Wei, K. Chi, K. Yu, A. Tolba, S. Mumtaz, M. Guizani, Computation time 
minimized offloading in noma-enabled wireless powered mobile edge computing, 
IEEE Trans. Commun. (2024) 7182--7197.

[16] N. Wang, S. Pang, X. Ji, M. Wang, S. Qiao, S. Yu, Intelligent driving task scheduling 
service in vehicle-edge collaborative networks based on deep reinforcement learning, 
IEEE Trans. Netw. Serv. Manag. (2024) 4357--4368.

[17] M. Khayyat, I.A. Elgendy, A. Muthanna, A.S. Alshahrani, S. Alharbi, A. Koucheryavy, 
Advanced deep learning-based computational offloading for multilevel vehicular 
edge-cloud computing networks, IEEE Access 8 (2020) 137052--137062.

[18] H. Zhang, Z. Wang, K. Liu, V2X offloading and resource allocation in SDN assisted 
MEC-based vehicular networks, China Commun. 17 (2020) 266--283.

[19] B. Fan, Z. He, Y. Wu, J. He, Y. Chen, L. Jiang, Deep learning empowered traffic 
offloading in intelligent software dfined cellular V2X networks, IEEE Trans. Veh. 
Technol. 69 (2020) 13328--13340.

[20] A. Paul, K. Singh, C.-P. Li, O.A. Dobre, T.Q. Duong, Digital twin-aided vehicular 
edge network: a large-scale model optimization by quantum-drl, IEEE Trans. Veh. 
Technol. (2024) 1--17.

[21] B. Qiu, Y. Wang, H. Xiao, Z. Zhang, Deep reinforcement learning-based adaptive 
computation offloading and power allocation in vehicular edge computing networks, 
IEEE Trans. Intell. Transp. Syst. (2024) 1--11.

[22] G. Wu, Z. Liu, M. Fan, K. Wu, Joint task offloading and resource allocation in multi

uav multi-server systems: an attention-based deep reinforcement learning approach, 
IEEE Trans. Veh. Technol. 73 (8) (2024) 11964--11978.

[23] B. Hu, W. Zhang, Y. Gao, J. Du, X. Chu, Multi-agent deep deterministic policy 
gradient-based computation offloading and resource allocation for Isac-aided 6g v2x 
networks, IEEE Int. Things J. (2024) 33890--33902.

[24] Y. Cong, M. Liu, C. Wang, S. Sun, F. Hu, Z. Liu, C. Wang, Task scheduling and power 
allocation in multiuser multiserver vehicular networks by noma and deep reinforce

ment learning, IEEE Int. Things J. 11 (13) (2024) 23532--23543.

[25] Y. Li, L. Li, Computation offloading and resource allocation in mec-enabled vehicular 
networks: partial offloading versus binary offloading, in: 2024 7th World Conference 
on Computing and Communication Technologies (WCCCT), 2024, pp. 260--266.

[26] Y. Guo, D. Ma, H. She, G. Gui, C. Yuen, H. Sari, F. Adachi, Deep deterministic pol

icy gradient-based intelligent task offloading for vehicular computing with priority 
experience playback, IEEE Trans. Veh. Technol. 73 (7) (2024) 10655--10667.

[27] B. Wang, D. Tu, J. Wang, Drl-based partial task offloading for multiple vehicles in 
vec networks, in: 2024 IEEE International Symposium on Broadband Multimedia 
Systems and Broadcasting (BMSB), 2024, pp. 1--6.

[28] M. Yan, R. Xiong, Y. Wang, C. Li, Edge computing task offloading optimization for a 
uav-assisted Internet of vehicles via deep reinforcement learning, IEEE Trans. Veh. 
Technol. 73 (4) (2024) 5647--5658.

[29] P. Qin, Y. Fu, R. Ding, H. He, Competition-awareness partial task offloading and uav 
deployment for multitier parallel computational Internet of vehicles, IEEE Syst. J. 
(2024) 1--12.

[30] B. Li, L. Zhu, L. Tan, A distributed deep reinforcement learning-based optimiza

tion scheme for vehicle edge computing task offloading, in: 2024 27th International 
Conference on Computer Supported Cooperative Work in Design (CSCWD), 2024, 
pp. 218--223.

[31] Y. Chen, X. Li, G. Xu, L. Liu, X. Wang, V.C.M. Leung, Competitive and cooperative 
computation offloading for intensive heterogeneous tasks in vehicular edge com

puting networks, in: ICC 2024 - IEEE International Conference on Communications, 
2024, pp. 5491--5496.

[32] W. Fan, Y. Zhang, G. Zhou, Y. Liu, Deep reinforcement learning-based task offloading 
for vehicular edge computing with flexible rsu-rsu cooperation, IEEE Trans. Intell. 
Transp. Syst. 25 (7) (2024) 7712--7725.

[33] Y. Hou, Z. Wei, R. Zhang, X. Cheng, L. Yang, Hierarchical task offloading for vehic

ular fog computing based on multi-agent deep reinforcement learning, IEEE Trans. 
Wirel. Commun. 23 (4) (2024) 3074--3085.

[34] X. Ning, M. Zeng, Z. Fei, Joint task offloading and service migration in ris assisted 
vehicular edge computing network based on deep reinforcement learning, in: 2024 
International Conference on Computing, Networking and Communications (ICNC), 
2024, pp. 1037--1042.

[35] P. Qin, Y. Wang, Z. Cai, J. Liu, J. Li, X. Zhao, Madrl-based urllc-aware task offloading 
for air-ground vehicular cooperative computing network, IEEE Trans. Intell. Transp. 
Syst. 25 (7) (2024) 6716--6729.

[36] S.S. Shinde, D. Tarchi, Hierarchical reinforcement learning for multi-layer multi

service non-terrestrial vehicular edge computing, IEEE Trans. Mach. Learn. Com

mun. Netw. 2 (2024) 1045--1061.

[37] N. Fofana, A.B. Letaifa, A. Rachedi, Intelligent task offloading in vehicular networks: 
a deep reinforcement learning perspective, IEEE Trans. Veh. Technol. (2024) 1--16.

[38] S. Li, W. Sun, Q. Ni, Y. Sun, Road side unit-assisted learning-based partial task of

floading for vehicular edge computing system, IEEE Trans. Veh. Technol. 73 (4) 
(2024) 5546--5555.

[39] M. Li, J. Gao, L. Zhao, X. Shen, Deep reinforcement learning for collaborative edge 
computing in vehicular networks, IEEE Trans. Cogn. Commun. Netw. 6 (2020) 
1122--1135.

[40] L. Zhu, Z. Zhang, L. Liu, L. Feng, P. Lin, Y. Zhang, Online distributed learning-based 
load-aware heterogeneous vehicular edge computing, IEEE Sens. J. 23 (15) (2023) 
17350--17365.

[41] L. Cui, C. Guo, C. Wang, Collaborative edge computing for vehicular applications 
modeled by general task graphs, in: 2023 4th Information Communication Tech

nologies Conference (ICTC), 2023, pp. 265--270.

[42] Z. Wei, B. Li, R. Zhang, X. Cheng, L. Yang, Many-to-many task offloading in vehicular 
fog computing: a multi-agent deep reinforcement learning approach, IEEE Trans. 
Mob. Comput. 23 (3) (2024) 2107--2122.

[43] P. Dai, Y. Huang, K. Hu, X. Wu, H. Xing, Z. Yu, Meta reinforcement learning for 
multi-task offloading in vehicular edge computing, IEEE Trans. Mob. Comput. 23 (3) 
(2024) 2123--2138.

Vehicular Communications 51 (2025) 100862 

14 

http://www.plgrid.pl/en
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEF6CE50F255DE0E0AEFE139BC7122CE0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEF6CE50F255DE0E0AEFE139BC7122CE0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEF6CE50F255DE0E0AEFE139BC7122CE0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib874E5BB3CB599C482B35A7CC1E07528As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib874E5BB3CB599C482B35A7CC1E07528As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib874E5BB3CB599C482B35A7CC1E07528As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib81C9698BBBD05DD7A05A8852C486CE09s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib81C9698BBBD05DD7A05A8852C486CE09s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib81C9698BBBD05DD7A05A8852C486CE09s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib1792DF50ECC452B0804564A2D3CB3715s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib1792DF50ECC452B0804564A2D3CB3715s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib1792DF50ECC452B0804564A2D3CB3715s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8BF207907B5C28C34260432260D48BBEs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8BF207907B5C28C34260432260D48BBEs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8BF207907B5C28C34260432260D48BBEs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8BF207907B5C28C34260432260D48BBEs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB6F220CF3F5CF91D55DAF4CC92944BCDs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB6F220CF3F5CF91D55DAF4CC92944BCDs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB6F220CF3F5CF91D55DAF4CC92944BCDs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7F1E4EC1A70F123561133EBB746AE04Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7F1E4EC1A70F123561133EBB746AE04Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7F1E4EC1A70F123561133EBB746AE04Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib42FFF4A71769A1C7BA164B1A11DD93B8s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib42FFF4A71769A1C7BA164B1A11DD93B8s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib42FFF4A71769A1C7BA164B1A11DD93B8s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib24076CC4D94D2443455ED613775A6FA6s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib24076CC4D94D2443455ED613775A6FA6s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib24076CC4D94D2443455ED613775A6FA6s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCFE3E07F41002CA5DB4B1DF1AA934FA0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCFE3E07F41002CA5DB4B1DF1AA934FA0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCFE3E07F41002CA5DB4B1DF1AA934FA0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCA0778513D8EA7FAD9063FBCFD312B9Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCA0778513D8EA7FAD9063FBCFD312B9Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibCA0778513D8EA7FAD9063FBCFD312B9Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC6BB5483217857B316CE9F737E43F9ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC6BB5483217857B316CE9F737E43F9ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC6BB5483217857B316CE9F737E43F9ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib318B5A9631A45104C00346454ED8DE61s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib1F2BB46D250F130DF7AA0A1F5AED4FD2s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib1F2BB46D250F130DF7AA0A1F5AED4FD2s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8918DED077CD0CC24E6AB8EECC648051s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8918DED077CD0CC24E6AB8EECC648051s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib8918DED077CD0CC24E6AB8EECC648051s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib031C478FC06143D9DA4967AFE3816856s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib031C478FC06143D9DA4967AFE3816856s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib031C478FC06143D9DA4967AFE3816856s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib64D64BFBC19E58D21818052A2DB34EB0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib64D64BFBC19E58D21818052A2DB34EB0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib64D64BFBC19E58D21818052A2DB34EB0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibA873362357183A8C19A1C857571ED498s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibA873362357183A8C19A1C857571ED498s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib73E98B9BB798A73D416D935C2DBF69D5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib73E98B9BB798A73D416D935C2DBF69D5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib73E98B9BB798A73D416D935C2DBF69D5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibAEB50A8ACD85866C737F8BA3CDB6A88Ds1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibAEB50A8ACD85866C737F8BA3CDB6A88Ds1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibAEB50A8ACD85866C737F8BA3CDB6A88Ds1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib35C2FA8BF639C2AF9E0BFD4F9B2C15ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib35C2FA8BF639C2AF9E0BFD4F9B2C15ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib35C2FA8BF639C2AF9E0BFD4F9B2C15ADs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3D8AEE2010605C7CA26047DE7D4A5F16s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3D8AEE2010605C7CA26047DE7D4A5F16s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3D8AEE2010605C7CA26047DE7D4A5F16s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2186969AB5FFCCE3FE391192088274CAs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2186969AB5FFCCE3FE391192088274CAs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2186969AB5FFCCE3FE391192088274CAs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC431D9F688B738FEDC845CF049FE0435s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC431D9F688B738FEDC845CF049FE0435s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibC431D9F688B738FEDC845CF049FE0435s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibA6D603ABDC6B601D832A33F79E105F8As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibA6D603ABDC6B601D832A33F79E105F8As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibA6D603ABDC6B601D832A33F79E105F8As1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAF667CF83995E262ECAC859003DEB22s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAF667CF83995E262ECAC859003DEB22s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAF667CF83995E262ECAC859003DEB22s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3F80141F97F8927BB366AD39B8B35C27s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3F80141F97F8927BB366AD39B8B35C27s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3F80141F97F8927BB366AD39B8B35C27s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6C4A749B1FCC792357325A09BDA59831s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6C4A749B1FCC792357325A09BDA59831s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6C4A749B1FCC792357325A09BDA59831s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB0DAD1E980030A50ED67A387718104A1s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB0DAD1E980030A50ED67A387718104A1s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibB0DAD1E980030A50ED67A387718104A1s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC14E0B4A80D418E582988A61A2CE9A5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC14E0B4A80D418E582988A61A2CE9A5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC14E0B4A80D418E582988A61A2CE9A5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC14E0B4A80D418E582988A61A2CE9A5s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib9C8382A896F06CDF7176FBDDD122A9FFs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib9C8382A896F06CDF7176FBDDD122A9FFs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib9C8382A896F06CDF7176FBDDD122A9FFs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib9C8382A896F06CDF7176FBDDD122A9FFs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibD054F4D7FEB50D30CD521BB7D0C4057Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibD054F4D7FEB50D30CD521BB7D0C4057Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibD054F4D7FEB50D30CD521BB7D0C4057Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE6321BF01671FDCAE7F83EF9FDF4B130s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE6321BF01671FDCAE7F83EF9FDF4B130s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE6321BF01671FDCAE7F83EF9FDF4B130s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib34BD52BDC10C7FC873ED2082E55CD1DBs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib34BD52BDC10C7FC873ED2082E55CD1DBs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib34BD52BDC10C7FC873ED2082E55CD1DBs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib34BD52BDC10C7FC873ED2082E55CD1DBs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2837E9F1AC2E7E55E348392F89C26F1Bs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2837E9F1AC2E7E55E348392F89C26F1Bs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2837E9F1AC2E7E55E348392F89C26F1Bs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibF1617596571A5EB7E1CC7DC30078E11Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibF1617596571A5EB7E1CC7DC30078E11Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibF1617596571A5EB7E1CC7DC30078E11Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibDB4F8926D30712C094D27C10461DEF64s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibDB4F8926D30712C094D27C10461DEF64s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6CA0E9E599317B01646A85BEC771D785s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6CA0E9E599317B01646A85BEC771D785s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib6CA0E9E599317B01646A85BEC771D785s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib0B49F22B84AD7D5031F4AB3B1B3734A7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib0B49F22B84AD7D5031F4AB3B1B3734A7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib0B49F22B84AD7D5031F4AB3B1B3734A7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib63C83913C02C7037008D47DCC455C706s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib63C83913C02C7037008D47DCC455C706s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib63C83913C02C7037008D47DCC455C706s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibDAF544998C08216AB93AAE395F1A79FCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibDAF544998C08216AB93AAE395F1A79FCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibDAF544998C08216AB93AAE395F1A79FCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib02B3BBE1BFED3982DCFBCB6226AE72B7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib02B3BBE1BFED3982DCFBCB6226AE72B7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib02B3BBE1BFED3982DCFBCB6226AE72B7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAFC5B91D9BE1784032DF67410A05E13s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAFC5B91D9BE1784032DF67410A05E13s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibBAFC5B91D9BE1784032DF67410A05E13s1


W. Yahya, Y.-D. Lin, F. Marzuk et al. 

[44] B. Hazarika, K. Singh, S. Biswas, S. Mumtaz, C.-P. Li, Multi-agent DRL-based task 
offloading in Mmultiple RIS-aided IoV networks, IEEE Trans. Veh. Technol. 73 (1) 
(2024) 1175--1190.

[45] N.H. Nguyen, P.L. Nguyen, H. Dinh, T.H. Nguyen, K. Nguyen, Multi-Agent Multi

Armed Bandit Learning for Offloading Delay Minimization in V2X Networks, IEEE, 
2021, pp. 47--55.

[46] F.G. Wakgra, B. Kar, S.B. Tadele, S.-H. Shen, A.U. Khan, Multi-objective offloading 
optimization in mec and vehicular-fog systems: a distributed-td3 approach, IEEE 
Trans. Intell. Transp. Syst. (2024) 1--13.

[47] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, L. Zhao, Vehicle-to-everything 
(V2X) services supported by LTE-based systems and 5G, IEEE Commun. Stand. Mag. 
1 (2017) 70--76.

[48] C. Consulting, GSMA, Vision 2030: low-band spectrum for 5g, maximising the 
socioeconomic value of spectrum, https://www.gsma.com/spectrum/wp-content/

uploads/2022/07/Low-Band-Spectrum-for-5G.pdf, 2022.

[49] L. Huawei Technologies Co., 5g network architecture: a high-level perspective, Tech. 
Rep., Huawei, 2016, https://www-file.huawei.com/~/media/CORPORATE/PDF/

mbb/5g_nework_architecture_whitepaper_en.pdf?la=en. (Accessed 13 July 2024).

[50] Y. Li, Optimization of task offloading problem based on Simulated-Annealing algo

rithm in MEC, in: 2021 9th International Conference on Intelligent Computing and 
Wireless Optical Communications (ICWOC), 2021, pp. 47--52.

[51] L.M. Rere, M.I. Fanany, A.M. Arymurthy, Simulated annealing algorithm for deep 
learning, Proc. Comput. Sci. 72 (2015) 137--144.

[52] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: a next-generation hy

perparameter optimization framework, in: Proceedings of the 25th ACM SIGKDD 
International Conference on Knowledge Discovery & Data Mining, KDD ’19, Associ

ation for Computing Machinery, New York, NY, USA, 2019, pp. 2623--2631.

[53] W. Yahya, E. Oki, Y.-D. Lin, Y.-C. Lai, Scaling and offloading optimization in pre

CORD and post-CORD multi-access edge computing, IEEE Trans. Netw. Serv. Manag. 
18 (4) (2021) 4503--4516.

Vehicular Communications 51 (2025) 100862 

15 

http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3E0FA0D9472C0D7B410B714E800FAD68s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3E0FA0D9472C0D7B410B714E800FAD68s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3E0FA0D9472C0D7B410B714E800FAD68s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE1B16CA4A49D0938C33BD592E0B7FD2Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE1B16CA4A49D0938C33BD592E0B7FD2Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibE1B16CA4A49D0938C33BD592E0B7FD2Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC28E01BE5C4EACFE305422F380EDE5Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC28E01BE5C4EACFE305422F380EDE5Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibEC28E01BE5C4EACFE305422F380EDE5Cs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7CD42DE8EEF2E5F7AA5FDB5BADF0050Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7CD42DE8EEF2E5F7AA5FDB5BADF0050Fs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7CD42DE8EEF2E5F7AA5FDB5BADF0050Fs1
https://www.gsma.com/spectrum/wp-content/uploads/2022/07/Low-Band-Spectrum-for-5G.pdf
https://www.gsma.com/spectrum/wp-content/uploads/2022/07/Low-Band-Spectrum-for-5G.pdf
https://www-file.huawei.com/~/media/CORPORATE/PDF/mbb/5g_nework_architecture_whitepaper_en.pdf?la=en
https://www-file.huawei.com/~/media/CORPORATE/PDF/mbb/5g_nework_architecture_whitepaper_en.pdf?la=en
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7017D01B31B79EA7EB8633EFEDCC90BCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7017D01B31B79EA7EB8633EFEDCC90BCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib7017D01B31B79EA7EB8633EFEDCC90BCs1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2649160F99D7E42CAAB43B67B1CA12C7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib2649160F99D7E42CAAB43B67B1CA12C7s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibFF16D4D32057AA46BB791154D49DF89Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibFF16D4D32057AA46BB791154D49DF89Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibFF16D4D32057AA46BB791154D49DF89Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bibFF16D4D32057AA46BB791154D49DF89Es1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3EAE593DD81D80CCF4935C8C73F045C0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3EAE593DD81D80CCF4935C8C73F045C0s1
http://refhub.elsevier.com/S2214-2096(24)00137-2/bib3EAE593DD81D80CCF4935C8C73F045C0s1

	Offloading in V2X with road side units: Deep reinforcement learning
	1 Introduction
	2 Related work
	2.1 Supervised learning-based approaches
	2.2 Reinforcement learning (RL) approaches in V2X offloading
	2.3 Multi-agent reinforcement learning (MARL) approaches
	2.4 Advanced RL and DRL-based approaches
	2.5 Optimization in distributed and cooperative systems

	3 V2X with RSU: system and problem formulation
	3.1 V2X with RSU architecture
	3.2 Latency model
	3.3 V2X with RSU problem statement

	4 Ratio-based offloading with TD3 and SA
	4.1 TD3-based offloading
	4.1.1 State
	4.1.2 Action
	4.1.3 Reward
	4.1.4 Multi-agent structure

	4.2 SA-based offloading

	5 Simulations and results
	5.1 Simulation setup and experimental settings
	5.2 Preliminary comparison of reinforcement learning algorithms
	5.3 Evaluation of SA and TD3 for ratio-based offloading in V2X systems with RSU
	5.3.1 Decision time
	5.3.2 Convergence time
	5.3.3 Decision quality
	5.3.4 Decision with unknown information


	6 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Data availability
	References


